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Abstract

End-to-end task-oriented dialog systems of-
ten suffer from out-of-distribution (OOD) in-
puts after being deployed in dynamic, chang-
ing, and open environments. In this work, we
propose SL-AGENT1, a self-learning frame-
work that combines supervised learning, re-
inforcement learning, and machine teaching
for building end-to-end dialog systems in a
more realistic changing environment setting.
SL-AGENT consists of a dialog model and a
pre-trained reward model to judge the qual-
ity of a system response. SL-AGENT en-
ables dialog agents to automatically adapt to
environments with user behavior changes by
learning from human-bot interactions via rein-
forcement learning, with the incorporated pre-
trained reward model. We validate SL-AGENT
in four different dialog domains. Experimental
results show the effectiveness of SL-AGENT
for automatically adapting to changing envi-
ronments using both automatic and human
evaluations. Furthermore, experiments on a
challenging domain extension setting demon-
strate that SL-AGENT can effectively adapt to
new tasks using limited human corrections pro-
vided via machine teaching. We will release
code, data, and pre-trained models for further
research.

1 Introduction

With the recent advances in neural approaches to
conversational AI (Gao et al., 2018), the most com-
mon approach of building task-oriented dialog sys-
tems is to train neural models to imitate expert
behaviors in large-scale corpora (Gao et al., 2018;
Lei et al., 2018; Zhang et al., 2020). However,
large-scale annotated corpora are rarely available
for new tasks in real scenarios, due to the high
cost of data collecting and labeling. Pre-training
and fine-tuning paradigm that leverages Pre-trained
Language Models (PLMs) has alleviated the data
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Figure 1: A human-bot dialog example, containing a
failed response related to user behavior changes. The
bot fails to respond with postcode due to language vari-
ations at first, but gives the correct response in the fol-
lowing attempt. These human-bot interactions contain
useful information from which the task bot can learn to
improve its performance.

scarcity problem to a large extent, and becomes
increasingly prevalent for building task-oriented
dialog systems (Peng et al., 2020b; Wu et al., 2020;
Peng et al., 2020a; Ham et al., 2020; Hosseini-Asl
et al., 2020).

However, these data-driven approaches assume
an independent and identically distributed (IID)
data setting, i.e., a static environment, and usually
exhibit a tendency of failures when confronted with
out-of-distribution (OOD) examples, i.e., chang-
ing environments. In the context of task-oriented
dialogs, changing environments are common and
arise from (i) user behavior changes – a lot
more variety of language/policy in the real world
than pre-built training corpora; (ii) task definition
changes – e.g., dialog systems need to handle new
functions (with new slots and values) as user and
business requirements evolve. As shown in Fig-
ure 1, due to changes in user behaviors, the system
fails to provide the postcode in the second response,
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but gives the correct response in the following at-
tempt (in the top-right corner of the second square).
These human-bot interactions accumulated after
deployment are usually abundant, task-specific, dy-
namic, but contain potentially useful information
to improve the bot. We argue that task bots should
not merely imitate expert behaviors in a corpus
but also learn from the human-bot interactions ac-
cumulated after deployment to adapt to changing
environments, requiring minimal to zero human
annotations.

In this paper, we propose SL-AGENT, a novel
self-learning framework for building task bots in
a more realistic setting, which allows the bot to
adapt to changing environments by learning from
the human-bot interactions after deployment. SL-
AGENT consists of a neural dialog model and a
reward model, as illustrated in Figure 1, where
the neural dialog model tracks belief states and
generates responses, and the reward model judges
the quality of an agent response from three per-
spectives: (i) fluency, (ii) success (iii) dialog flow
consistency. The reward model is pre-trained using
large-scale dialog corpora, based on a Transformer-
based language model, to gain the capability of
quick adaptation for judging the quality of a re-
sponse on any new task. As depicted in Figure 2,
SL-AGENT operates in the following steps: (i)
First, the dialog model and pre-trained reward
model are fine-tuned to new tasks with limited task-
specific dialogs. (ii) Then, the bot interacts with
users and collects human-bot dialogs. (iii) Next,
the bot is refined with the collected human-bot
dialogs using reinforcement learning, where the
response quality being judged by the fine-tuned
reward model. (iv) Finally, machine teaching is
utilized to correct representative dialogs to update
the bot or provide instructions on how to handle
new functions or tasks.

We conduct comprehensive empirical studies on
four different dialog domains with both automatic
and human evaluation. Results demonstrate that
SL-AGENT is an effective self-learning framework,
enabling task bots to automatically adapt to en-
vironments with user behavior changes by learn-
ing from human-bot interactions accumulated after
deployment2. In a challenging domain extension
setting, SL-AGENT effectively adapts to a new
environment using limited human corrections pro-

2We refer to this automatic learning process as self-
learning in the paper.

Figure 2: Training pipeline of the proposed SL-
AGENT.

vided via machine teaching. The promising re-
sults exhibit the remarkable self-learning ability of
SL-AGENT framework for handling user behavior
changes, and its lifelong learning capability for han-
dling task definition changes, without substantial
amounts of extra data, after deployment.

In summary, the main contributions of our work
are two-fold:

• We propose a novel self-learning framework
SL-AGENT, that combines supervised learn-
ing, reinforcement learning, and machine
teaching, which allows task bots to effectively
adapt to changing environments that may dif-
fer dramatically from the setting in which the
bots are built.

• We demonstrate that SL-AGENT enables a de-
ployed bot to automatically adapt to environ-
ments with user behavior changes by learning
from human-bot interactions, based on four
well-studied dialog tasks using both automatic
and human evaluations.

2 Related Work

RL for Dialog Policy Learning RL has been
largely implemented in dialog systems for policy
optimization. Young et al. (2013); Peng et al. (2018,
2017); Liu and Lane (2018, 2017) formulate dialog
policy learning as a sequential problem and use
REINFORCE (Williams, 1992) and/or Q-learning
(Watkins and Dayan, 1992) to optimize the dialog
policy. SL-AGENT utilizes a similar REINFORCE
algorithm but focuses on fully end-to-end optimiza-
tion. Therefore, the aforementioned approaches
can be directly compared within this paper.



Pre-trained Models for Dialog Systems Pre-
trained language models have been adopted to de-
velop task-oriented dialog systems and achieve
state-of-the-art performance on various tasks (Wu
et al., 2020; Peng et al., 2020a; Coope et al., 2020;
Henderson et al., 2019; Ham et al., 2020; Hosseini-
Asl et al., 2020). However, all of these works as-
sume a static environment. Such assumption is
generally violated in practice after dialog systems
being deployed. Our method enables dialog models
to automatically adapt to changing environments
by learning from human-bot interactions.

Handling OOD examples for Dialog Systems
Several attempts have been made to handle OOD
inputs from changing environments (Shah et al.,
2018; Su et al., 2016; Gašić et al., 2011; Gašić
and Young, 2013; Liu et al., 2018; Rajendran et al.,
2019; Dai et al., 2020). Shah et al. (2018); Gašić
et al. (2011); Gašić and Young (2013); Liu et al.
(2018) proposed to learn from human-bot interac-
tions with reinforcement learning but relies on the
queried human feedback score after each session.
Su et al. (2016) introduced a reward model, which
is trained with a large pre-collected dialog corpus,
to judge the quality of system responses. All these
efforts either demand a large pre-collected corpus
to train reward models or utilize simple LSTM
(Hochreiter and Schmidhuber, 1997) architecture,
thus limiting the capability of efficiently adapting
to new tasks or environments. SL-AGENT lever-
ages pre-trained models to build reward function
for eliminating the need for a large pre-collected
corpus and thus is more effective and economical.

3 SL-AGENT

3.1 Dialog Model

SL-AGENT is a general framework that is compati-
ble with any generative end-to-end dialog models.
In this paper, we employ SOLOIST (Peng et al.,
2020a) 3, a pre-trained end-to-end dialog model,
resulting in an agent termed SL-SOLOIST4.

We briefly review SOLOIST for completeness.
SOLOIST formulates the end-to-end dialog genera-
tion as a sequence generation problem, by sequen-
tially concatenating the inputs and outputs of 4
dialog modules (i.e., NLU, DST, POL, NLG) in a

3Models and data are available at https://aka.ms/
soloist.

4In this paper, SL-AGENT refers to the proposed frame-
work and SL-SOLOIST is an instance of it, which utilizes
SOLOIST as its dialog model.

typical dialog system. Each dialog turn is repre-
sented as:

x = (s, b, c, r). (1)

where s is the entire dialog history, b is the anno-
tated belief state, c refers to DB state fetched from
database, and r is the agent response. SOLOIST em-
ploys a Transformer-based model with parameters
θD to characterize the sequence generation prob-
ability pθD(x). Initialized with GPT-2 (Radford
et al., 2019), the model is pre-trained on large-scale
annotated dialog corpora, and then fine-tuned with
limited task-specific dialogs. More details can be
found in Peng et al. (2020a).

Synthetic Dialog Construction. Directly de-
ploying the agent with a dialog model trained using
limited examples to serve users yields unsatisfac-
tory performance. The primary challenge is that
the dialog model cannot handle unseen slot values
due to insufficient coverage by training examples.
To alleviate this issue, we propose to synthesize di-
alog examples by exhausting database (DB) values
and substitute corresponding slot values of in the
training set. Specifically, for each dialog turn x, we
replace slot values in the utterances and user goal
with corresponding new values of the randomly
sampled DB entry5.

3.2 Reward Model
The reward model judges the quality of agent re-
sponse in terms of (i) fluency, (ii) success, (iii)
dialog flow consistency. We formulate the quality
prediction problem as a binary classification task.
As shown in Figure 3, the reward model R is a
Transformer parameterized by θR with inputs x
defined as Equation 1.

y = pθR(s, b, c, r). (2)

The model is optimized towards promoting correct
belief states and responses given the dialog history,
and discouraging incorrect ones.

Note that dialog turn is the concatenation of
input-output pairs of four dialog modules. To en-
hance the supervision, we propose to integrate two
auxiliary tasks, i.e., belief state tracking and re-
sponse generation, and train the reward model us-
ing multi-task learning. Each task is described in
detail as follows.

5Note that synthetic dialog construction technique is a
supplemental part of SL-AGENT, which can be enhanced by
any state-of-the-art data-augmentation methods.

https://aka.ms/soloist
https://aka.ms/soloist


Figure 3: Architecture and training objectives of the reward model.

Main Task: Quality Prediction. For each dia-
log turn, we add a special token [EOS] at the end
of the token sequence (as in Figure 3), to capture
the overall dialog information. Then, we leverage
the representation on [EOS] to predict the quality
of belief state and response, i.e., whether it is posi-
tive example (y = 1) or negative example (y = 0)
(Peng et al., 2020a) using cross-entropy:

LQ = y log (pθR(x))+(1−y) log
(
1− pθR

(
x′)) .

(3)
In order to endow the reward model with the ca-
pability of predicting the quality of belief state
and agent response in terms of fluency, success
and dialog flow consistency, we construct negative
examples x′ as follows: (i) negative belief with re-
placed belief, DB state (s, b′, c′, r); (ii) negative
belief and response with replaced belief, DB state
and response (s, b′, c′, r′); (iii) negative response
with corrupted response (s, b, c, r′) (i.e, replaced
response, half-cut response, and response with re-
peated tokens).

Auxiliary Task: Belief Prediction. The objec-
tive of predicting the belief state, based on dialog
history s, is defined as:

LB = log p(b | s) =
Tb∑
t=1

log pθR (bt | b<t, s)

(4)
where the length of the belief state sequence is Tb,
and b<t refers to all tokens before t.

Auxiliary Task: Grounded Response Genera-
tion. Similarly, the training objective of generat-
ing delexicalized response, grounded in the dialog
history s, belief state b and DB state c, is (Peng

et al., 2020a):

LR = log p(r | b, c, s)

=

Tr∑
t=1

log pθR (rt | r<t, b, c, s)
(5)

Full Training Objective. The multi-task objec-
tive for learning the model parameters θR is repre-
sented as:

LθR(D) =
|D|∑
n=1

(LQ (xn) + LB (xn) + LR (xn))

(6)
where |D| is the number of training examples.

Similar to the dialog model, a pragmatic reward
model is expected to be able to judge the quality
of agent responses for any new task with limited
training examples, and captures the potential to
predict the quality of responses to unseen user be-
haviors. To achieve this goal, we propose to fol-
low the pre-training and fine-tuning paradigm to
build the reward model, i.e., pre-train the reward
model using large-scale annotated heterogeneous
dialog corpora, then fine-tune the pre-trained re-
ward model with annotated task-specific data. The
pre-training corpora used in this paper is the same
as Peng et al. (2020a).

3.3 Refine with Reinforcement Learning
The interactions between the agent and users can
be modeled as a sequential decision problem. As
such, the dialog model can be refined via the RE-
INFORCE algorithm (Williams, 1992). The pol-
icy is the trained dialog model pθD(x), the initial
state is the dialog history s, and the action space
corresponds to the vocabulary set V . The reward
perceived by the dialog model isR (s, b, c, r) from
the reward model. The parameters θD are updated
by maximizing the cumulative reward score. The
refining procedure is described in detail as follows:



For each RL episode, we randomly sample a
dialog turn with dialog history and delexicalized
response. We run the dialog model to generate
belief state b̂, based on the input dialog history se-
quence s. At each time step t, we sample a token b̂t
according to the model distribution, where the log-
its’ distribution of the model is first filtered using
Nucleus (top-p) filtering (Holtzman et al., 2019),
then redistributed via softmax function. Then we
retrieve DB state ĉ from the database using b̂, and
sample the delexicalized response sequence r fol-
lowing same sampling procedure, based on the to-
ken sequence (s, b̂, ĉ). Note that the delexicalized
response is given as part of the input. Then we feed
the concatenation of dialog history s, generated
belief state b̂, retrieved DB state ĉ and the response
r, i.e. (s, b̂, ĉ, r) into the reward model pθR(x)
to obtain the reward score R(s, b̂, ĉ, r). The re-
ward score is either 1 for the predicted positive
example, or -1 otherwise. The training objective is
represented as:

LθD = −
Tb̂∑
t=1

log pθD

(
b̂t | b̂<t, s

)
×R(s, b̂, ĉ, r)

−
Tr∑
t=1

log pθD

(
rt | r<t, b̂, ĉ, s

)
×R(s, b̂, ĉ, r),

(7)
where the length of generated belief state and in-
put delexicalized response are Tb̂, Tr, respectively.
Algorithm 1 (in Appendix A) summarizes the self-
learning-based RL refining framework for refining
the dialog model.

3.4 Machine Teaching

Deployed task bots need learn to deal with new
tasks, i.e., task definition changes, as user require-
ments or environment evolve. Training task bots to
adapt to a new environment requires high-quality
annotated task-specific dialog corpora, which is ex-
pensive to collect and annotate. Machine teaching
is already shown as an effective task bot training
paradigm, which enables dialog authors to visual-
ize dialogs, “teach" deployed task bots with new
knowledge through active conversing (Simard et al.,
2017; Williams and Liden, 2017; Shukla et al.,
2020). Therefore, we leverage machine teaching
to generate a certain number of annotated task-
specific dialogs in a new domain with minimal
human corrections.

We implement machine teaching via Conversa-
tional Learner (CL) (Shukla et al., 2020). The
teaching process is conducted in three steps: (i)
The trained task bot is deployed online to fulfill the
given goals by interacting with real users, leaving
a handful of human-bot dialog session logs. (ii)
Human experts select a few representative failed
dialogs to construct training examples in new do-
mains by adding new action templates, introducing
new slot-value pairs, correcting inappropriate re-
sponses and annotations (i.e., belief states). (iii)
The deployed task bot (i.e., both the dialog model
and reward model) is trained on these training ex-
amples continually (i.e., both the dialog model and
reward model), which enables the deployed task
bot to handle task definitions changes, and user
behaviour changes through RL refining in new iter-
ations.

4 Experiments

In this section, we first describe how we design
evaluations on changing environments. Then we in-
troduce the experiments we conduct on four dialog
domains using both automatic and human evalua-
tion.

4.1 Experimental Setup

We validate the efficiency and flexibility of pro-
posed SL-SOLOIST on four MultiWOZ single-
domain dialog datasets (Budzianowski et al., 2018),
reorganized by Peng et al. (2020a). Data statistics
are shown in Table 2. Based on above datasets, we
construct two settings to represent the changing en-
vironments – Setting I for user behavior changes;
and Setting II for task definition changes.

Implementation Details. To construct training
examples (shown in Figure 3), we tokenize the dia-
log turn sequence using byte pair encodings (Sen-
nrich et al., 2015) and delexicalize responses by re-
placing slot values with corresponding special slot
tokens (Lei et al., 2018; Peng et al., 2020a). We im-
plement proposed reward model based on Hugging-
face Pytorch Transformer (Wolf et al., 2020) using
GPT-2 (Radford et al., 2019), which has 117M pa-
rameters. We pre-train reward model for 10 epochs
using Schema dataset (Rastogi et al., 2019), which
contains 22,825 dialogs in 17 domains. The reward
model is pre-trained on two 24G Nvidia P40 with
a mini-batch of 8 and learning rate of 5e-5, using
Adam optimizer (Kingma and Ba, 2014), where the



Model Attraction Train Hotel Restaurant

Inform Success BLEU Inform Success BLEU Inform Success BLEU Inform Success BLEU

SOLOIST5 27.00 14.00 4.07 72.73 32.32 5.43 25.00 3.50 2.93 26.50 2.00 4.71
SOLOISTS 53.00 29.00 8.49 73.74 54.55 6.94 59.00 29.50 4.29 62.50 41.50 7.33
SL-SOLOIST 64.00 41.00 9.08 74.24 58.08 10.42 61.50 34.00 7.61 75.00 44.50 10.60
SOLOIST50 86.00 65.00 12.90 80.81 64.65 9.96 74.50 43.50 8.12 81.00 55.50 12.80

Table 1: End-to-end evaluation results on four tasks. SOLOIST5 is trained with 5 examples. SOLOISTS refers to
training with synthetic dialogs constructed from the 5 training examples. SL-SOLOIST indicates refining with 45
simulated human-bot dialogs using SL-AGENT. SOLOIST50 denotes training with whole 50 labeled examples,
which can be seen as an upper bound, quoted from Peng et al. (2020a). (Difference in mean is significant with
p<0.01 based on Combined.)

Domain Attraction Train Hotel Restaurant

#Train 50 50 50 50
#Valid 50 50 50 50
#Test 100 200 200 200

Table 2: Data statistics of four single-domain dialog
datasets (Peng et al., 2020a).

training examples are truncated or padded to the
max length of 500.

We fine-tune the pre-trained reward model and
dialog model (i.e., pre-trained SOLOIST) for 20
epochs with limited number of labeled task-specific
dialogs to complete new tasks using multi-task
training objectives in the pre-training stage. During
refinement, top-p is selected as 0.5 for all models.
We perform gradient clipping with the max norm as
1 for learning model parameters, with the batch size
as 1 and learning rate as 5e-6. The dialog model is
refined on a single 24G Nvidia P40 until converg-
ing on the validation set. During testing, Nucleus
filtering is also used for decoding with top-p as 0.5.

Automatic Evaluation Metrics. We report the
results using the same automatic evaluation met-
rics following Budzianowski et al. (2018): (i)
Inform(%) evaluates whether the agent returns
an appropriate entity. (ii) Success(%) judges
whether the agent correctly answers all requested
attributes. (iii) BLEU(%) measures the word over-
lap of generated response against human response.
(iv) Combined(%) assesses the overall quality,
which is defined as: Combined = (Inform +
Success) × 0.5 + BLEU.

Human Evaluation Metrics. Following the
same evaluation protocol in the DSTC9 Track 1
challenge (Gunasekara et al., 2020), we conduct
human evaluations to judge the agent quality. For
each dialog session, Amazon Mechanic Turks are
presented with a goal and instructions, then they
are required to converse with agent to achieve the

goal via natural language. At the end of each
dialog session, Turks are required to assess the
overall dialog quality using the following five met-
rics: (i) Success w/o g(%) judges whether the
agent completes the task. (ii) Success w/ g(%)
judges whether the agent completes the task and
provides matched slot values against the database
record. (iii) Understanding(1-5) measures the
understanding correctness of user utterances. (iv)
Appropriateness(1-5) indicates the appropriate-
ness, naturalness, and fluency of an agent response.
(v) Turns reports the average number of dialog
turns for successful dialog sessions.

4.2 Results of Setting I - User Behaviour
Changes

Simulation Evaluation Setup. Deploying a
trained agent to interact with real human users and
collect dialog logs is labor-intensive and costly for
experimental purposes. Hence, we construct a set-
ting to simulate user behavior changes6. We ran-
domly sample 5 examples from the training set as
labeled data to train a task bot (i.e., both dialog
model and reward model). Note that the remain-
ing 45 dialogs contain unseen user behaviors for
the task bot. Hence, it is applicable to simulate
user behavior changes by modifying the remain-
ing 45 dialogs as unlabeled imperfect human-bot
interactions (through adding noise (i.e., corrupting
response7). This simulation setting allows us to
perform a detailed analysis of SL-AGENT without

6Building a user simulator is inapplicable in our changing
environment setting. (i) It is difficult to build reliable user
simulators. Building agenda-based user simulators requires
sophisticated human expertise for designing rules. (ii) Build-
ing model-based user simulators requires sufficient labeled
data. Furthermore, model-based user simulators merely im-
itate expert behaviors in the training corpus, cannot provide
user behaviors that are unseen from task bots.

7Note that the associated belief states annotations are not
used by SL-SOLOIST. (Construction process is described in
Appendix C.)



Model Attraction Train Hotel Restaurant

Inform Success BLEU Inform Success BLEU Inform Success BLEU Inform Success BLEU

SOLOISTS 53.00 29.00 8.49 73.74 54.55 6.94 59.00 29.50 4.29 62.50 41.50 7.33
SL-SOLOIST 64.00 36.00 8.84 78.28 60.10 9.06 62.00 31.50 7.39 70.00 45.00 10.93
SL-SOLOIST* 66.00 40.00 9.01 75.76 67.17 10.38 62.50 32.50 7.83 70.50 47.50 11.36

Table 3: Automatic evaluation results on four tasks in Human-in-the-loop Setting. The first row refers to pre-
viously reported SOLOISTS. SL-SOLOIST indicates refining with 20 real human-bot dialogs using SL-AGENT.
SL-SOLOIST* refers to refining with 20 real human-bot dialogs using turn-level human feedback score (an upper
bound). (Difference in mean is significant with p<0.01 based on Combined.)

much cost and easily reproduce the experimental
results.

Simulation Evaluation Results. The end-to-
end evaluation results on four domains are pre-
sented in Table 1. SOLOIST5 is trained with 5
randomly sampled training examples. SOLOISTS
is trained using synthetic dialogs constructed from
the 5 randomly sampled training dialogs, which are
the same dialogs used for training SOLOIST5. The
results show that the proposed synthetic dialog con-
struction method improves the performance over
all metrics by a significantly large margin, in par-
ticular Inform and Success, which demonstrates
the effectiveness of synthetic dialog construction
method on improving model generalization capa-
bility.

SL-SOLOIST is further refined based on
SOLOISTS using proposed SL-AGENT, where the
reward model is trained using the same training
examples as SOLOIST5. We observe that compared
to SOLOISTS, SL-SOLOIST dramatically improves
the performance further and achieves comparable
performance with SOLOIST50 on all tasks. The
results verify the vast potential of the proposed SL-
AGENT, allowing the bot to automatically adapt
to environments with user behaviours by learning
from unlabeled noisy human-bot dialogs.

Human-in-the-Loop Evaluation Setup. Simu-
lation setting allows effortless experimental studies
to validate the effectiveness of SL-AGENT. How-
ever, the results are likely biased. Therefore, in the
human-in-the-loop setting, we deploy SOLOISTS
online and recruit human users to converse with it
to achieve the assigned user goal. We collect 20
real human-bot dialogs to refine SOLOISTS, result-
ing in the agent SL-SOLOIST.

Human-in-the-Loop Evaluation Results. The
evaluation results on Restaurant are shown in
Table 3. We observe that SL-SOLOIST refined with
20 real human-bot dialogs outperforms SOLOISTS

over majority of evaluation metrics. We conclude
that the results of human-in-the-loop evaluation
and simulation evaluation are consistent, confirm-
ing that SL-SOLOIST enables self-learning after
deployment by learning from interactions.

4.3 Results of Setting II – Task Definition
Changes

Setup. We follow the domain extension experi-
ment setting in Lipton et al. (2018) to assess the
ability of SL-SOLOIST to quickly adapt to the
changes in task definition. We extend existing
Restaurant, denoted as Restaurant-Ext,
with additional functions by introducing 4
new slots, i.e., [restaurant_dish], [value_price],
[start_time], [end_time], and corresponding values
for each DB entry (in Appendix E). The first slot
is about the restaurant’s signature dish, and the last
three are related to delivery service. We leverage
Conversational Learner (CL) (Shukla et al., 2020),
a practical machine teaching tool, to visualize and
select dialogs for constructing training examples on
the Restaurant-Ext domain by providing cor-
rections and introducing new slots (in Appendix D).
Finally, 10 examples are obtained through machine
teaching for training and 50 for testing. We fine-
tune the dialog model SOLOISTS and the reward
model trained with 5 dialogs in train set, using 10
corrected dialogs, resulting the agent denoted as
SOLOISTS+TEACH. Then, SOLOISTS+TEACH is
deployed to converse with real human to collect 20
dialogs, which are then used to refine itself.

Results. The evaluation results are presented in
Table 4. We observe that SOLOISTS has zero
success rate, which is predictable as it does not
have any knowledge of the extended functions.
SOLOISTS+TEACH outperforms the baseline by 17
points in terms of Combined score, which exhibits
the effectiveness of machine teaching for adapting
the agent to a new task. SL-SOLOIST+TEACH is
the best performing system, lifting the Combined



Model Restaurant-Ext

Inform Success BLEU Combined

SOLOISTS 54.00 0.00 6.42 33.42
SOLOISTS+TEACH 64.00 18.00 9.34 50.34
SL-SOLOIST+TEACH 68.00 24.00 11.76 57.76

Table 4: Evaluation results on task definition
changes. SOLOISTS denotes SOLOIST trained with
synthetic dialogs constructed from 5 training dialogs
in Restaurant domain. SOLOISTS+TEACH is fine-
tuned with 10 dialogs in Restaurant-Ext provided
via machine teaching. SL-SOLOIST+TEACH is refined
using 20 real human-bot dialogs collected after deploy-
ment. (Difference in mean is significant with p<0.01
based on Combined.)

Model Restaurant

SR w/o g SR w/ g Under. Appr. Turns

SOLOISTS 31.82 29.54 3.86 4.13 10.00
SL-SOLOIST 43.10 36.21 3.97 4.13 9.89

Table 5: Human evaluation results. SR w/o g: Success
rate without grounding, SR w/ g: Success rate with
grounding, Under.: Understanding score, Appr.: Ap-
propriateness score.

score by approximately 7 points. The results
demonstrate that SL-SOLOIST is able to adapt to
new tasks and continually improve itself by learn-
ing from interactions, revealing the effectiveness
of SL-AGENT that combines supervised learning,
reinforcement learning and machine teaching for
adaptations to changing environments.

4.4 Interactive Human Evaluation

Setup. Corpus-based evaluation is conducted us-
ing automatic evaluation metrics, which are rough
proxies for agent response quality. Furthermore,
automatic evaluation results may not adequately
reflect the capability of dialog systems for help-
ing users complete tasks in the real world, as real
user inputs are more dynamic, complex, even with
noise. Therefore, we conduct human evaluations
to evaluate the performance of SOLOISTS and SL-
SOLOIST interacting with human users, following
the evaluation protocol in DSTC9 track 1 challenge
(Gunasekara et al., 2020), with 100 dialogs gath-
ered for analysis, respectively.

Results. The human evaluation results on
Restaurant domain are presented in Table 5.
The results show that SL-SOLOIST achieves bet-
ter performance than SOLOISTS over all the met-
rics, which are consistent with the automatic eval-
uation results. The significant improvement over

Reward model Restaurant

Inform Success BLEU Combined

GPT-2 67.00 41.50 9.30 63.55
BERT 68.00 42.50 9.55 64.80
BERT-Large 66.00 44.00 11.09 66.09
RoBERTa 72.00 45.00 9.23 67.73
RoBERTa-Large 69.50 46.50 10.20 68.20
SL-SOLOIST 75.00 44.50 10.60 70.35

Table 6: Ablation study results on using different PLMs
for reward models in Restaurant domain. The first
five rows indicate evaluation results of fine-tuned GPT-
2, BERT, BERT-Large, RoBERTa, RoBERTa-Large,
respectively. The last row refers to previously reported
SL-SOLOIST. (Difference in mean is significant with
p<0.01 based on Combined.)

SOLOISTS on two success rate metrics, especially
success rate with grounding, verifies the effective-
ness of the SL-AGENT for refining the dialog agent
after deployment, as it more adequately reflects the
system’s capability for completing tasks in real sce-
narios.

4.5 Ablation Studies on Reward Model

We conduct ablation studies on Restaurant do-
main to analyze the influence of choosing different
PLMs and multi-task training objective on the re-
ward model. We choose several popular PLMs in-
cluding BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019). Note that all the models share
the same pre-training, and fine-tuning procedure,
except that BERT and RoBERTa are trained with
quality prediction task while SL-SOLOIST is op-
timized using multi-task learning. We show in
Table 6 that RoBERTa performs better than BERT.
GPT-2 (on which SL-SOLOIST is built) trained
with single quality prediction task, yields signifi-
cantly worse performance than other methods. We
speculate that bidirectional Transformer encoder
enables BERT and RoBERTa to capture richer con-
text information. SL-SOLOIST achieves consistent
performance improvements over all the metrics,
showing the effectiveness of multi-task learning for
the reward model. The results of different auxil-
iary tasks in the multi-task objective are shown in
Appendix B.

5 Conclusion

In this paper, we propose SL-AGENT, a novel self-
learning framework in a more realistic changing
environment setting. It combines supervised learn-
ing, reinforcement learning and machine teaching



to enable the task bot to adapt to a changing en-
vironment by learning from user interactions after
deployment. We demonstrate the effectiveness of
SL-AGENT for automatically adapting to environ-
ments with user behavior changes in four dialog
domains. In addition, SL-AGENT enables quick
adaptation to an environment with task definition
changes without the need for lots of extra data via
machine teaching. As for future work, there are
more ways that a task bot could learn to improve it-
self, e.g., during machine teaching, human experts
could provide not only correct labels but also feed-
back in natural language. We leave the theme of
effective machine teaching to future work.
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A RL Refining Algorithm

Algorithm 1 Self-learning-based RL refining
framework.
Input:

Training examples D in the form of dialog
turns;
Trained agent with dialog model pθD(x) and
reward model pθR(x).

Output:
Refined agent with updated dialog model pθ∗D .

1: while not converged do
2: Randomly sample a dialog turn, i.e. token

sequences of dialog history s;
3: Run dialog model pθD on dialog history

x = (s) to generate belief state b̂;
4: Retrieve DB state ĉ from a database using

generated belief state b̂;
5: Sample corresponding response r based on

dialog history s, belief state b̂ and DB state
ĉ;

6: Use the reward model to predict the quality
of the belief state and response with reward
score,
R(s, b̂, ĉ, r);

7: Calculate the loss according to Equation 7;
8: Update the parameters of the dialog model,

θD ← θD + α∇θDLθD .
9: end while

B Ablation Studies on Different
Auxiliary Tasks in the Multi-Task
Objective for Reward Model

We conduct ablation studies on Restaurant do-
main to analyze the effect of different auxiliary
tasks in multi-task objective through adding only
one auxiliary generation task. The results are
shown in Table 7. The first row refers to fine-
tuned GPT-2 with single quality prediction task.
The second, third, fourth row indicates only adding
response generation, only adding belief generation,
and full objective, respectively. The results show
that only adding auxiliary response generation task
or belief generation task improves GPT-2 to some
extent, but leg behind the results of full objective
(i.e., SL-SOLOIST) over all metrics. The result of
SL-SOLOIST verifies the importance of multi-task
objective for the reward model. GPT-2+Response
legs behind GPT-2+Belief in terms of Combined,

Reward model Restaurant

Inform Success BLEU Combined

GPT-2 67.00 41.50 9.30 63.55
GPT-2+Response 67.00 41.50 10.40 64.65
GPT-2+Belief 71.50 43.00 9.33 66.58
SL-SOLOIST 75.00 44.50 10.60 70.35

Table 7: Ablation study results on different auxiliary
tasks in the multi-task objective for reward model in
Restaurant domain. The first three rows indicate
evaluation results of fine-tuned GPT-2 with single qual-
ity prediction task, adding response prediction only,
adding belief prediction only, respectively. The last
row refers to full objective (previously reported SL-
SOLOIST). (Difference in mean is significant with
p<0.01 based on Combined.)

which may due to the high word overlap between
delexicalized responses.

C Simulated Human-Bot Corpora
Construction

The unlabeled simulated human-bot corpora is con-
structed as follows: for each dialog turn, (i) we
remove belief state annotations; (ii) we add nega-
tive examples by corrupting the response (i.e., re-
placed response, half-cut response, and response
with repeated tokens). We will release the simu-
lated human-bot corpora for reproducible research.

D Machine Teaching Process

E Restaurant-Ext DB entry



Figure 4: Illustration of machine teaching process via CL (Shukla et al., 2020). Dialog authors edit the human-bot
conversion log in (a) via correcting its belief states in (b), and selecting/inserting/correcting a appropriate response,
creating a response with action templates, adding slots and corresponding values for new tasks in (c) (Peng et al.,
2020a)

Figure 5: Restaurant-Ext DB entry.


